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On Nonlocal Continuum Mechanics
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A. E. Green t and P. M. Naghdi~

Abstract. It is shown in this paper that the conservation laws of nonlocal
continu~n mechanics are equivalent to, and can be derived from, the conserva-
tion of energy and the invariance conditions under superposed rigid body
motions. Also, the theory of nonlocal thermoelasticity is reconsidered in
the light of recent developments in thermodynamics, taking invariance
conditions fully into account.
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1. Introduction

In the mechanics of single phase continua in which nonlocal effects are

excluded, it is known that the equations of conservation of mass, momentum and

moment of momentum may be derived from the energy equation with the help of

invariance conditions under superposed rigid body motions. In the first part

of the paper, we prove that the same is true fcr nonlocal continuum meci’anics.

From another point of view, this shows that there is consistency between the

equations of conservation of mass, momentum and moment of momentum, and the

equation of conservation of energy if one accepts the invariance criteria.

Constitutive equations for a nonlocal elastic and thermoelastic solid

have been studied by a number of writers (see, e.g. [~ ,6,7] and references

contained therein). There appears to be a number of differences between these

authors over invariance conditions under superposed rigid body motions and

subsidiary conditions to be satisfied by force, couple and energy residuals.

Recently an entirely new approach to continuum thermodynamics

has been proposed by Green and Naghdi [8]. In view of the differences between

previous authors and in the light of the developments in [8), constitutive

equations for a nonlocal thermoelastic solid are reconsidered here taking the

invariance conditions fully into account.

Consider a finite body ~ with material points X and identify the material

point X with its position X in a fixed reference configuration. A motion of

the body is defined by a sufficiently smooth vector function x which assigns
position x=X(X ,t) to each material point X at each instant of time t. In the

present configuration at time t, the body ~ occupies a region of space R bounded

by a closed surface ~~~~. Similarly, in the present configuration, an arbitrary

material volume of cB occupies a portion of the region of space R, which we

denote by a part p (ca) bounded by a closed surface ap. Let p = p(X,t) be the

mass density in the present configuration and designate the velocity vector

~~~~~~~,- ~~~~~~~
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2.

at tLm~ t b~ i~~ x , where a superposed dot stands for the material time derivative.

Throughout the paper , we assume that mass is conserved locafly.

We assume that in its present configuration, the body ~Z is acted upon by

an external body force b= b(X,t) per unit mass and an external surface force t

per unit area acting on the boundary ~t. The rate of work of these external

forces are, respectively, b . v per unit mass and t. v per unit area. We also

admit the existenc e of an internal body forc e f = f ( x ,t )  and an internal body

couple represented by an axial vector x=x (X,t), each per unit mass , with

corresponding rates of work per unit mass equal to V and ~ X . w, respectively,

where w= cur l v is the (axial) vorticity vector. In addition, there is an

internal surface force t= t (x ,t ; i i ) ,  act ing over each surface ~P with outward

unit normal n, such that t •  v represents rate of work per unit area; the field

t, called the stress vector , is measured per unit area of ~P and assumes the

value t on ~R.

W h reference to the thermal properties of the body, we first introduce

the abs ~ute temperature at each material point by a scalar field 9= e(x,t)>O,

as well~~s an external rate of supply of heat r=r(X ,t) per unit mass and an

external rate of surface supply of heat -h per unit area acting across aft.

Also, we admit the existence of an internal sur face flux of heat -h = - h(X ,t; n)

per unit area across the surface ~~ ; the field h , called the heat flux and

measured per unit area per unit time , assumes the value h on ~R. We define

the ratios of r and h to temperature by

s = s(X,t) = , k = k(X,t; a) = (1.1)
9 — 9

and refer to (Li)
1,2 

as the external rate of supply of entropy per unit mass

and the internal surface flux of entropy per uni t area of’ M’, respectively;

the latter assumes the value ~ on the external bouxuary of ~~ , where k is
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3.

the external rate of’ surface supply of’ entropy per unit area of’ ~R. Further,

we assume the existence of’ the specific entropy specified by a sca].ar field

= ij(X,t) and an internal rate of production of entropy ~ = ~(x ,t) per unit mass,

with a contribution to the internal rate of production of heat equal to 9~ per

unit mass. In addition, we admit the existence of a potential e €(x,t) called

the specific internal energy and a residual rate of production of’ energy

~=~ (x,t) per unit mass.

A -~~~~~ - - — - ~~~~~~~~ -.-~~~  _ _ _ _ _ _ _
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2. The energy equation. Invariance conditions.

The balance of energy for an arbitrary material volume occupying a part P

in the present configuration can be stated as

d~~’— I p(€ + •~~ v v)dv -1
~P — —

= $  p(r + b .v + f .v +~ X .w +~~)dv + $ (t.v-h)d a . (2.1)
— ,.s P.., — P.., P.S 0.#  —

Under superposed rigid body motions r epresented by

+ = c+Qx , (2.2)

where c(t) is a vector function and Q(t) a proper orthogonal tensor function

of time, we assume that the mass density p, the heat supply r , and the fields

1I,e,c ,~ ,h,f ,X ,t , (2.3)

all are unaltered apart from orientation in the case of vectors. Thus, if’

become ~q
4
,9
+
,...,t

+ 
under superposed rigid body motions, we

have

+ +
‘

~~ 
= r ~ , e = e  ,

+ + + + +
p = p  , r = r  , , , h = h  , (2.1+)

In addition to (2.1), which holds for every part P ( ca) ,  we assume that the

energy equation for the whole body is the same as that for local continuum

mechanics so that
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5.

v .v)dv = $ p(r+b .v)dv + $ (~~.v - ~~)da . (2.5)

It follows from (2.1) and ( 2 . 5)  that

$ p(f .v+-~ X .w+~~)dv = 0 . (2.6)

For local continuum mechanics , a derivation of field equations and jump

conditions from the energy equation has been given by Green and Rivlin [1) and

by Green and Naghdi [2]. Here we employ a method of derivation which is modelled

on that used by- Naghdi [3, p. 1+87 ] in a different context. Let C~ be a second -

order tensor-valued function of time defined by o(t)=Q(t)Q(t)
T
, where the

notation QT stands for the transpose of Q. Then , since Q is a proper orthogonal

tensor , we have

(2.7)

Hence, there exists an axial vector w corresponding to the skew tensor ç~ such

that

c~ a = w x a  (2.8)

for all vectors a. Naghdi [3, p. 1 + 53] has shown that Q can be chosen so that

= c~ , ~~ = ~~ , (2.9a )

Q(t) = i , = (2.9b )

where () is a constant skew-symmetric tensor, is a constant vector and I is

the identity tensor . With this choice , in all subsequent work we may write

Q
T

0 , ~~ a . a = O  (2.10 )

for all vectors a.
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Consider first a motion of the continuum which differs from the given

motion only by a uniform rigid body translational velocity- specified by

x~~= x + c  ,

(2.11)
+ • +

V = v + c  , w = w
,_ __ — _, —

From (2.1+) and (2.11) it follows that p, r ,e ,Ø, h ,f’,X and t are all unchanged

under this superposed rigid body motion . We assume that the new motion can be

maintained by the same body force b. The energy equation associated with this

motion is obtained from (2.1) by replacing v by v + c , where C is a constant

vector. Then, remembering that the volume element dv and surface element da

are also unchanged, by subtraction we obtain

~~2 d $  p dv+~~ .[-~-$ pv d v - $  p (b+f)dv_$ t da ]=0
~~~dt — dt — — —

for all arbitrary ~~, the quantities in the brackets being independent of c.

Hence,

p d v = 0  , (2.12)
t

P

pv dv = $ p (b+ f)dv + 
$ 

t d.a . (2.13)
P — —

These are the equations of conservation of mass and linear momentum. From

(2.12) and (2.13), under suitable smoothness assumptions, follow the field

equations

p + p d i v v 0 ,

(2.11+)

T n  , div T+p~b+f) = pv

where T is the stress tensor.

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ---~~~~~~—~~~ -- — -  -~~~~~~~~~~~~~~~~~~~ --~--— --— 
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
— 
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By applying the same invariance conditions to the energy equation (2.5)

for the whole body, we obta in

* $~ 
pv dv = $ Pb dv+$ t da . (2.15)

From comparison of (2.15) with (2.13), we conclude that

r pf d v = 0  . (2.16)
‘lit

The condition (2.16) also follows from (2.6) by a similar consideration of’

invariance. It states that the total internal force acting on the whole body

is zero .

Next, we consider a superposed rigid body motion specified by

(2.17)

and restrict our attention to the case in which the conditions (2.9) hold.

Then~

(2.18)

= v + 2 C ~ v + Q ~x , = w + 2w

and
+ + + +f .

~~~~ = f .*j .~-~ •xx f , ). .w = ), .w + 2uj .)— — — p.O — — — — — -~
+ +
t .v = t ~~v+ w •xx t , (2.19)— — — P.S — —

where in obtaining (2.19) use has been made of the requirements (2.1+). We now

need to consider the invariance condition to be satisfied by the body force b

~The result for is recorded without the use of (2.9b ) since 
+ + occurs

later in an integral which is differentiated with respect to time.

L ~~~~~~~~~~ 

-

~~~~
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under superposed rigid body motion (2.17), i.e., we must find the new body

force b~ which wil l sustain the motion (2.17). From (2.11+) and (2.1+), we

obtain the re1ation~

= (b ..i.) (2.20)

and the rate of work of body force b+ per unit mass due to is

(2.21)

where (2.9), (2.18) and (2.20) have been used.

Consider now an energy equation of the form (2.1) associated with the

motion (2.17) and subtract from it the energy equation (2.1). Then, with

the help of (2.10), (2.19) and (2.21), it follows that

w [-
~~ $ px x v dv - ~

‘ 

p(x x (b+f) + X)dv - x x t da]
—0 dt — — .Jp — ‘~~ “ 

~~p ”

- 
~~ 
Q2 . [~~~~

- j ’ p(Q x)(Q x)dv~~j ’ p(v x + x  v)dv] = 0.o dt — — — — — — — —
for all arbitrary ~~~~~. From the last result follow the two equations

~~ 
j ’  Px~~ v d.v=$ p[x x (b+f)+X]dv + $ xx t da , (2.22)

p(Qx)(Q x)dv = $ p ( v x + x v ) d v  , (2.23)

the first of which represent the conservation of moment of momentum. With the

use of (2.11+), the field equation resulting fr om (2.22) can be reduced

to

p r + T _ T T = o , (2.21+)

~A1ternative1y, the result (2.20) can be obtained directly from (2.13) and
(2.11+); in this connection, see [3, p. 1+86].

— .~~~t 
-
~~~~ 

— , . - -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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9.

where r is the skew t€nsor corresponding to the axial vector A so that

r a = x x a  (2.25)

for all arbitrary vectors a.

Suppose now that there are no surfac es of discont inuity in P. Then , in

view of (2.9) and (2.l1+)
~
, the local equation resulting from (2.23) is

satisfied identically and yields no new information. The same conclusion

holds even if the mass density p has a jump discontinuity across a surface 1’,

assuming tha t x is continuous.

If we consider th.~ superposed rigid body motion (2.17) and use the energy

equation (2,5), by a procedure similar to that which led to (2.22) we find - 
-

d l ’  r r— px x v dv = px x b dv + X x  t da . (2.26)
It — “~~ It — — “

~ it~~ 
—

Comparison of (2.26) and (2.22) implies tha t

p(xxf+X )dv = 0 . (2.27)
It

The condition (2.27) may also be deduced from a similar consideration of

invariance of (2.6) under the superposed rigid body motion (2.17). It states

that the total internal couple acting on the whole body is zero. We observe

V that (2.16) can also be derived from (2.27) with the help of invariance

conditions. If’ we make use of (2.21+) and (2.25) the condition (2.27) can be

put in the alternative form

$ [p [x®r f~~x)+T TT]dv = 0 . (2.28)

For later convenience we set

(2.29)

_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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so that , from (2.6), we have

$ p~~d v = 0  . (2.3o~
It

In view of the invariance conditions (2.1+), (2.11) and (2.18), it follows that

~.i is not unaltered by superposed rigid body motions. The energy equation (2.1)

in which we use the substitution (2.29) for ~.j., together with (2.5) and the

derived equations (2.16), (2.12), (2.13), (2.15), (2.16), (2.22), (2.26),

(2.27), (2.28) and (2.30) are equivalent to those postulated by Edelen, Green

and Laws [1+] and Green and Naghdi [5],  apart from notational differences .

They are also similar to those employed by Eringen and Edelen [6] and Eringen

[71 except that these authors allowed for nonlocal mass changes. However, ~n

[6], a different view from that given here is adopted for the invariance

condition to be satisfied by the function which corresponds to p..

— V -~~~~~.’
.. 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ -. —--
~~~~~~~ - - - - —-~~~~~

—- .- —- --.---—— .
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3. Balance of entropy

Following the recent approach of Green and Naghdi [8] to thermodynamics,

we assume a balance of’ ent~”opy in the form

- 
~~ 

j P11 dv = 5 p(s+~ )dv - k da (3.1)
P P

for every material volume occupying a part P in the present configuration,

where s and k are defined by (1.1). The field equation resulting from (3.1)

is

p’~ = p (s+~ ) - div p , (3.2)

where the entropy flux and the heat flux vectors p and q~ are related by-

q = S p  , k = p .n , h = q .n  . (3.3)

Invariance condit ions additional to those in (2.1+) are

k~~= k  , p~~= Q p  , q’ = Q q  , ~~
‘ =~~~ , s~~= s  . (3.14)

With the help of (2.11+), (2.29), (3.2) and (3.3), the field equation

resulting from the energy equation ~2.l) can be reduced to

- p(~~+1\~ ) + T .  grad v -  p 1. v + p ~

- p~8-p • grad e = 0 , (3.5)

where the specific He).mholtz free energy ~=~~(X ,t) is defined by $=c - fl B .

In view of (2. 1+) and (3.1+) it is clear that p. cannot, in general, be invariant

under superposed rigid body motions if’ the energy equation is to remain

invariant. The behavior of p. under such motions, which is determined by

(2.1+), (2.2 1+ ) and (2.29), is precisely that which will render (3 .5) invariant .

— —~~-.-— .—-—- — V-V -. ~~~~~~~ -
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Once constitutive equations have been specified for

(3.6)

the energy equation (3.5) is regarded as an identity for all processes. We

also regard (2.21+) and the subsidiary conditions (2.16), (2.28) and (2.30) as

identities to be satisfied for all thermo-mechanical processes, i.e., for all

motions and all temperature distributions. As far as the last four of’ these

subsidiary conditions are concerned, the view taken here appears to differ

from that adopted in [6,7].

When the body is in equilibrium with v = O  and all constitutive variables

independent of the time (but dependent on x) , we assume that 0, and hence 
~
.j.,

vanishes. Then, it follows from (3.5) and (3 .2) that

p~9+p . grad 8 = 0 ,

(3.7)

p (s+~ ) - d i v  p =  0

or

pr - div q = 0 , (3.8)

It was observed in [8] that the quant ities ~~~~ may be arbitrary to

the extent of additive functions f ,f,-8f, respectively, where i is sri arbitrary

function of x,9, their space and time derivatives and a functional of their

past histories throughout It. The additive functions have the property that

they make no contribution to the differential equations for X,e or the energy

identity (3 .5),  boundary and initial conditions. The arbitrariness was removed

by setting

f = O  . (3.9)

The same situation holds for the present nonlocal theory except that now f’ may

~~~~~~~~~-
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also be a functional of X,9 over the whole region It. The arbitrariness is again

removed by the specification (3.9). 
-

A mathematical intepretation of’ the second law of thermodynamics was shown

in [8) to lead to an inequality which reflects the fact that , for every process

associated with a dissipative material, a part of the external mechanical work

supplied to a material volume P is always converted into heat and cannot be

withdrawn from p as mechanical work. We assume that the constitutive response

functions for € ,11 include dependence on the set of variables v ’,è’,~~ and their

higher space and time derivatives, where a superposed prime denotes the values

of the variables at any point in the present configuration it [see Eq. (14.21)).

We refer to this set of variables collectively as ta. Further, let c~~fl denote

the respective values of c ,fl when the variables Ia are set equal to zero in the

response functions. Thus, for example,

(3.10)

where the dots in (3.10)
3 
refer to the higher space and time derivatives of

v ’,e’,g’. Then, the inequality for nonlocal continuum mechanics corresponding

to that obtained previously for local continuum mechanics (see (14.3) of (8]) is

$ pwdv ~ 0 , (3.11)
where It

~~~~~~~~~~~~~~~~~ 
~ - pf - ~~~~~

= ~~~~~~~~~~~~~~~~~~~~~~ pp.
* * (3.12 )

= e  - e~

In addition to a thermodynamic restriction corresponding to (3.11), -two

further inequalities which place restrictions on the heat conduction vector

and internal energy are proposed in [8, Sec. 14]. But the corresponding

additional inequalities will not be needed in the present paper.

- .~~~~~~~~ _ —~~ ---- ..- .- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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1+. Nonlocal thermoelasticity

- 

As noted in section 1, a number of writers have studied nonlocal elasticity

and thern~elasticity in the context of nonlinear continuum mechanics. Without

giving an extensive bibliography, we refer to [14,6,7] and references cited

therein. An examinat ion of these papers shows that there is no clear agree-

ment on the constitutive theory of thermoelasticity. By way- of additional

background, we recall that a fairly general class of thermoelastic solids was

considered in [li]; and, although this work was not the most general possible

within the framework of the nonlocal theory, the results given satisfy all the

invariance conditions and subsidiary equations in a manner which is in line

with those of the present paper. More general constitutive assumptions were

made initially in [6,7], but the results in [6,7] in the case of zero heat

conduction appear to be different from each other, partly because of the

difference of interpretation of invariance conditions.

We introduce further notations by

g = g rad e , F=Grad X , F = L F  , L = g rad v
(14.1)

r _  (p/p )P ir 
~~~~~ 

(p/p~)P.F , ~~= grad e L T
~ ,

where the operator grad is with respect to x, the operator Grad with respect

to X and p is the density of the solid in a reference configuration. Also,
— 0

p=p (X,t) , e=e (X,t) , g=g (X ,t) , x=~~(X ,t) , F=F(X,t) , v= i~(X,t)

p ’= p(X’,t),e’= O(X’,t),~~
’=~~(X ’,t),x ’ x(X’,t),F’ F(X’,t),v ’=~~(X ’,t)

(4.2)

V 

p0 = p0(X) , p~ = p0(X ’) , dV = dV(X) , = dV(X ’) ,

dv = dv (X ,t) , dv ’ = dv(X ’,t)

. _ 
- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- . 
~~~~~~~~~~~~~~~~~~ ~~~~~~ - .



In conformity with (14.2), henceforth we use a superposed prime to designate

the operation of replacing X by X ’ and X ’ by- X. For example, corresponding to

— 4.1
9 ~c’ ,,1 ~ I v

L — L I, ~~~~~~~~~~~~ ,g ,x ,~~ ~~~~~~~~~ ,~ ,

we write

4’’ — DI ~ ~ “ t i t’L — L I, 

~~ 

,

~~~ 

,X ,-& , ~,g,x,r ,I. ,

For a nonlocal thermoelastic solid , we adept the constitutive assumptions

that

(14.3)

are functions of

(14.1+)

and functionals of

(14.5)

over the whole region It. In equilibrium, the deformation function x and the

temperature e on the right-hand sides of’ (14.2)2,4 and (14.2)8,10 are independent

of’ t but can be chosen arbitrarily. The function p. vanishes in equilibrium

and hence vanishes when the functions in (14.14) and (14.5) depend also on t.

Subsequent investigations shows that p .=O yields an inadequate description

for nonlocal thermoelasticity. Inspection of the energy equation (3.5) as an

identity, particularly- the term 4, suggests that we allow p. to be a linear

function of degree one in

(11.6)

~ 

V V  ~~~~~~~~~~~~~ 
—
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V
~~nd a inear functional of degree one in

(14.7)

over it, as well as depending nonlinearly on (4.14) and (4.5).

Before proceeding further and in order to simplify the rest of our

discussion, it is convenient to dispose of some mathematical preliminaries.

For this purpose, we f irst introduce t~è vector space ~j of all quadruplets

(a ,a,b,A ) consisting of’ the scalar a , the two vectors a,b and the tensor A.

The space ~
j is a 16-dimensional vector space with the inner product of the

two quadruplets (a,a,b,A) and (c,c,d,B) as

(a,a,b,A ) . (c,c,d,B) = a c + a . c + b •d +A ’B  (14.8)

and with the norm

= [(a,a,b,A )  . (a ,a ,b,A )]~ . (14.9)

Let U be an open and connected subset of ~j consisting of those quadruplets

(a,a,b,A) with a>0 and det A>0. Then,(8,g,X,F) certainly- lies in U. We

assume all variables in (14.1+) to (14.7) are continuous functions of X in It

for all times and introduce the abbreviation

= ( e ( . ) , g ( . ) , x ( . ) , F ( . ) )  . (11.~o)

As will become apparent shortly, the constitutive relations to be introduced

below lead us to the study of the functional relations of the form

f(X) f (/~(x’),A(x) ) = ?(~~~),/i(X)) , (4 .n)
V

where dependence on t is understood and where It0 is the region occupied by the

finite body Z in its reference configuration. 

-. ~~~~~~~ _ V . V .. ..: 1Ti~~ ~~~~~ V .~~~~VTTV:T :1V~~~~~~ 
-. ~T:::.:: 
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Let y(.) be a given influence function which is positive, monotone

decreasing and continuous in and introduce the norm

)~ = [$~~( I~ —X ’I 
~
L(

~.
’) . r(x’ )dv (1.1.12)

for all continuous functions r(.) defined for every X ’EItQ whose values lie in

ii and for definiteness also specify- y(o) = 1. The collection of all such func-

tions r(.) forms a pre-Hilbert space ~$ in which the inner product for the two

functions ~~~~~~~~ and ~~~~, ‘)  is

- <~~(•),r (.)> = j
~ 
y(~x x ’I)r (x’) .~~ (x’)dv ’ . (14.13)

We suppose that the functional ?(r(. ) ~~ is defined for every A in U and

for every function r(•) in )$. Then, f’ is said to be continuous if for each

fixed r ( • )  and for every v(.) in $,

?(r ( • ) + v ( • ) ,  A + 1 T)  - ?(r(.),A) -‘0 (14.114)

as + tv(  )~~ 
.m 0. The functional f is continuously differentiable if the

relation (14.11+) can be replaced by

I~iI +ll~(.) +v ( • ) ,  
~~~~~~~~ 

-?(r(.),A)

- ~?(r(.),A). r(.),~~v(.))~~ 0 (14.15)

as )
~

) +~Iv~
.)

~I ~ 0. Here Df’(r ( .) , A) is a continuous functional with values
— — — _

in the space it and is simply the partial derivative of f with respect to 1’.

holding r(•) fixed , i.e.,

Df’(r(.),A) = ~~~~ 
(r(~),A) . (14.16)

Also, for each fixed r ( • )  and A, 6r(r(.),AIv(.)) is a continuous scalar-valued
functional defined in $ which is linearly dependent on v ( )  and is continuously



.
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dependent on the pairs (r(~ ),A). If’ the functional f is continuously differenti-

able in the sense just described, then the der~vative of the functional f in

(14.11) with respect to t is given by

~
‘ = ~~!. 

~~~~~~~~~ 
. ;~+ e,

’
~( ,it~A (x’)) . (4.17)

Moreover, the functional 6f’(A(•),AIA (X’)), which is linear in it(x’) admits the

representation

= 

~~~~ 
•

= $ •(x,x’) . A(X’)dv’ , (4.18)
It — — — —

where f(X,X’) is specified by— — —

•(x,x’) = (Mx ”),A (x’),A(x),x’,x’,x) (4.19)
X ” E& 0

A
and • is a functional of X” over i t .

Returning to our main objective concerning the constitutive equations in

nonlocal elasticity, we recall that in obtaining the local field equations we

have already tacitly introduced the usual continuity and differentiability-

assumptions, which must be satisfied by the various fields and functions.

Moreover, as noted above, it has been also assumed that all quantities in

(4.4) to (4.7) are continuous functions of X throughout R for all times. We

now introduce the constitutive assumptions that fl,~ ,f,T,p,p.,X are continuous

functionals of’ the type (4.ii), and that 
~
, in addition, is a continuously

differentiable functional in the sense defined above. We also assume that p.

is a continuous functional of A () and a continuous function of t~(X j. Then, if

- 
$ is the quadruplet

_ _ _ _ _ _ _ _ _ _ _  _~:~~
-- .._ _ _ _ _ _
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~~ = (iu ,rn,n,K) , (14.20)

we may write

H
+ $ ( m Ô’ ÷ra .~~’ + n . c ’ ÷ K . i ”)dv ’ . (4.21)

The last expression can be rewritten in the following form:

A. . A .

P4 -p ’flO +L .grad e+ (p/p0
)P.F

A A
-g~~L .L -pf .v - +pp . , (14.22)

where

- ph = p + 
SIt 

p ’m ’dv ’ , £ = p + 5 p ’ifl ’dv ’ ,

(14.23)
A A

(p/ p0)P = p + 
J 

p’K’dv ’ , - Pr = p ~~~~ 
+ 

~~~ 
~
‘
~~‘d~~

’— It —and
A . . . .

pp . = j [pme ’ - p ’m ’O+ pm . (grad e)’- p’m ’ . grad 9

pin . LiTg # + ‘rn ‘ . LTg

+p n .v ’— p ’n ’.v

+ pK.F ’- p ’K’ .F)dv ’ . (4.21+)

A
We observe that p. satisfies the condition

S p~dv = 0 (14.25)

identically.

Since the expression (14.22) for p
~ 
must be invariant under superposed

rigid body motions, it follows from (14.22) and (14.214) that pf’ has the

alternative form

4 — - -
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p ’n ’)dv ’ (4.26)

and

A A
~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-$ {pn~~x ’- p ’n ’~~x+ p KF
’T
~ P

IK IF
T _ p~

’®m+ p~~~ rn 1]T dv ’=O , (14.27)
it

where
A A
T = (p/p0)P ~~, 

- . (14.28)

From (4.26) and (4.27) we see that

~ Aj pfdv = 0 (4.29)
It —

and
A A  A / ~

,j [p (x®f-f ~~x)+T-T ]dv = 0 . (14.30 )
It — — —

The results (4.26) and (4.27) can also be obtained by making explicit the condition

that $ is an invariant function of (14.4) and a functional of’ (4.5) under superposed

rigid body motions, and. by using the results (4.23)2,34 and (4.28) (see, e.g. [4]).
For convenience, we now define h~,f,p.,T by the equations

A
‘

(14.31)
A — T T + T

The functions 1~,f,T satisfy the same type of constitutive equation as 1~,f’ ,T

and, in view of (2.16), (2.28), (14.29) and (4.30),

f p f ’dv =O , (14.32)
•i t

_ —
~~~~~~~~~~~~~~ 

= 0 . (4.33)

The function ~ has the same type of constitutive equation as p. and because of

- -

~ 

_~~~~~~~.± -
~~

V- 
~~~~~~~~~~~~~~~~ .- -—- -~~~~~~~ --.
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(2.30’
~ and (14.25’),

Pp.dv = 0 . (14.314)

Since the energy equation (3.5) is regarded as an ident ity for all processes

and since ~ and p are ~ridependent of the rates ( 14 .6 )  and (14.7) and p. is

linear of degree one ir~ these variables , wi th  the help of (14.22) and (14.31),

it follows from (3.5) that

p~9~~p~ grad 9 = 0 (14.35)

and

- pT~e - L .  grad 9-  pf’ . v + T .  grad ~~~~ p; = 0 . (14.36)

From (14.34) and (14.36) we have

((p1~-di v 2)94- (pf *div ~) vith ’-J ’  ( T n .  v-~ .t.n)da = 0 (14.37)
It “

for all processes. For givt~n values of th~ variables (4.14) and (14.5) we may

choose B and v arbitrari ly and independentl y throughout I t U~~R , so that

p1~- div L = 0 , p 1 + div T 0 in R , (14.38)

T n = O  , L . n = O  on ~R . (14.39)

These are restrictions on constitutive equations for T~,L, T to be satisfied for

all processes . Also, from ( 14.36) and (4 .38) we have

- div(j9- ~~v) + p = C . (4.40)

Again , this is a restriction on the constitutive equations for L,T,~ for all

processes.

For the class of con~titutivL equations considert~d here it is difficult

to make explicit the restrictions impli’-d by (4.3~ ) to (4 .40 ) .  Given these

L - ~~~~~
- - 

— — - -.-—-—-.-
~~ .—~~~- —

~~~
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restrictions then the subsidiary conditions (14.32) to (14.314) are satisfied.

If the Helmholtz function 4 does not depend explicitly on g,g’, then

from (4.23)2, (4 .38) and (4.40) we see that

= 0 , ~ = 0 , p~~÷ div(~~v) = 0 , (14.141)

while (14.28) becomes

A
T =  (p/p0

)PF . (4.142)

In view of (14.38) and (14.39) we see that the internal body force f’ and stress T

make no contribution to field equations and yield no applied stress on BIt. It

may happen that from the identities (14.38), (4.42) and (14.4i) it follows that

(14.143)

but we have not been able to prove this. In view of the properties associated

with f’,T it seems natural to place special emphasis on the situation in which

(14.143) hold. Given (4.41) to (4. 1+3), it follows from (14.31) that

A A A A A T
= ~ ‘ £ = £ ‘ ~ 

= 
~ 

‘ = 
~~. 

= 
~~~~~~~~ ~:. 

‘ (14.1414)

A A
where h,...,P are given by (14.23)l 3 4~ 

(4.214) and (14.26). The field equation

(2.14) reduces to

div T+p(b +f’) = p
~
, (14.1+5)

while, with the help of ( 1+.35) , equation (3.2) becomes

- p9T~ = pr - div q . (4.146)

Constitutive equations for T,X or equivalently T,I’, must satisfy the identity

(2.24).
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The above discussion of constitutive equations has been carried out without

the help of any form of second law of thermodynamics. When the free energy

response function does not depend explicitly- on g and g’, then $ = $ and, by

(14.23)
~
, (1+.3l)

~ 
and (14 .141) i, T~=T also. Moreover , from an examination of

(3.12), (4 .35) and (2.30), it can be seen that the inequality (3.11) is identically

satisfied and yields no new information. We do not consider here the case in

which 4 does depend on g and g ’ and set aside a discussion of the conditions

to be imposed on the heat flux vector.

The constitutive equation for ~ and other results given in [14] may- be

regarded as special cases of those obtained here. The present results,

however, differ in some respects from those given in [6 ,7].
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